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LINEAR CONNECTIONS IN THE BUNDLE OF LINEAR
FRAMES

Joon-Sik Park*

Abstract. Let L(M) be the bundle of all linear frames over
M , u an arbitrarily given point of L(M), and ∇ : X(M) ×
X(M) → X(M) a linear connection on M . Then the follow-
ing results are well known: the horizontal subspace and the
connection form at the point u may be written in terms of lo-
cal coordinates of u ∈ L(M) and Christoffel’s symbols defined
by ∇. These results are very fundamental on the study of the
theory of connections. In this paper we show that the local ex-
pressions of those at the point u do not depend on the choice of
a local coordinate system around the point u ∈ L(M), which
is rarely seen. Moreover we give full explanations for the fol-
lowing fact: the covariant derivative on M which is defined
by the parallelism on L(M), determined from the connection
form above, coincides with ∇.

1. Introduction

Let L(M) be the bundle of all linear frames over a smooth manifold
M , u an arbitrarily given point of L(M), and∇ : X(M)×X(M) → X(M)
a linear connection on M . Here X(M) is the set of all smooth vector
fields on M . In this paper, in terms of local coefficient functions Γi

jk

of the linear connection ∇ on M and local coordinates of the point
u ∈ L(M), we express the horizontal subspace Qu ⊂ Tu(L(M)) and
the connection form at the point u ∈ L(M) (cf. Proposition 2.2 and
Theorem 2.3). These results are well known, and are very fundamental
in the study on the theory of connections. In this paper we show that
the local expressions of the horizontal subspace and the connection form
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at the point u do not depend on the choice of a local coordinate system
around the point u ∈ L(M), which are rarely seen. Moreover, we give full
explanations for the following fact: the covariant derivative on M which
is defined by the parallelism on M , determined from the connection form
above on L(M), coincides with ∇ (cf. Proposition 2.5).

2. Horizontal subspaces in the bundle of linear frames over
a smooth manifold

2.1. Connections in a principal fiber bundle. Let (P, M,G, π)
be a principal fiber bundle over a manifold M with group G. For each
u ∈ P , let Tu(P ) be the tangent space of P at u and Gu the subspace of
Tu(P ) consisting of vectors tangent to the fiber through u. A connection
in (P, M, G, π) is an assignment of a subspace Qu of Tu(P ) to each u ∈ P
such that

(2.1) Tu(P ) = Gu + Qu (direct sum);

(2.2) Qug = Rg?Qu for every u ∈ P and g ∈ G, where Rg is the trans-
formation of P induced by g ∈ G, Rgu = ug;
(2.3) Qu depends differentiably on u.

Given a connection Q in (P, M, G, π), we define a 1-form ω on P with
values in the Lie algebra g of G as follows. For each W ∈ TuP , we define
ω(W ) to be the unique x ∈ g such that (x?)u is equal to the vertical
component of W . Here x? is the fundamental vector field corresponding
to x ∈ g which is defined on P (cf. [1, 2]). The form ω is called the
connection form of the given connection Q (cf. [2, 3, 4]).

2.2. The Christoffel’s symbols of a linear connection on M .
Let ∇ : X(M) × X(M) → X(M) be a linear connection on M . Taking
local coordinate systems (x1, ..., xn), (y1, ..., yn) on neighborhoods U, V
being contained in M respectively, then we may write

(2.4)

∇ ∂

∂xj

∂

∂xi
=

n∑

k=1

Γk
ji

∂

∂xk
,

∇ ∂

∂yj

∂

∂yi
=

n∑

k=1

Γ̃k
ji

∂

∂yk

on U, V respectively. Here Γk
ji (resp. Γ̃k

ji) are called the Christoffel’s
symbols for the linear connection ∇ on M relative to the local coordinate
system (x1, ..., xn) (resp. (y1, ..., yn)) on neighborhoods U (resp. V ) on
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M . In the intersection of the two coordinate neighborhoods U and V ,
we have

(2.5) Γ̃k
ji =

∑
l,s,h

∂yk

∂xl
∂xs

∂yj
∂xh

∂yi Γl
sh +

∑
l

∂2xl

∂yj∂yi
∂yk

∂xl .

2.3. Horizontal subspaces and connection form. Here and from
now on in this paper, we shall denote the bundle L(M) of linear frames
on M by P and the general linear group GL(n,R), n = dimM , by G.
Let ∇ : X(M) × X(M) → X(M) be a linear connection on M . Let
Γk

ji and Γ̃k
ji the Christoffel’s symbols with respect to local coordinate

systems x1, ..., xn, y1, ..., yn which are defined on neighborhoods U, V ,
respectively. For w ∈ π−1(U ∩ V ) we may write

(2.6)
w =(

∂

∂x1
, ...,

∂

∂xn
)π(w)(a

i
j(π(w)))i,j

=(
∂

∂y1
, ...,

∂

∂yn
)π(w)(b

i
j(π(w)))i,j .

So we obtain two local coordinate systems on π−1(U ∩ V )

(2.7) (x1, ..., xn, a1
1, ..., a

n
n) and (y1, ..., yn, b1

1, ..., b
n

n).

Let p be an arbitrarily given point which belongs to U , and let X =∑
i ξ

i(∂/∂xi)p =
∑

i η
i(∂/∂yi)p, (ξi, ηi ∈ R), be an arbitrarily given tan-

gent vector which belongs to Tp(M). Then

(2.8) ηi =
∑

j ξj(∂yi/∂xj)p ∈ R.

First of all, we obtain the horizontal lift of X at u ∈ P, (π(u) = p).
Let ct,−ε < t < ε, be an integral curve of X which satisfies the following
conditions:

(2.9)
c0 = p = π(u),

(x1(ct), ..., xn(ct)) = (ξ1t, ..., ξnt) (−ε < t < ε).

Let ut, −ε < t < ε, be the horizontal lift of ct satisfying the initial
condition u0 = u. We denote ut, −ε < t < ε, by (X1(t), ..., Xn(t)).
Then, (X1(0), ..., Xn(0)) = u0 = u. Moreover we may write for each
t ∈ (−ε, ε)

(2.10)

ut =(X1(t), ..., Xn(t))

=(
∂

∂x1
, ...,

∂

∂xn
)ct(a

i
j(ut))i,j

=(
∂

∂y1
, ...,

∂

∂yn
)ct(b

i
j(ut))i,j .
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From (2.6) we get on π−1(U ∩ V )

(2.11) bi
j =

∑
l

∂yi

∂xl a
l
j , ai

j =
∑

l
∂xi

∂yl b
l
j .

In order to obtain the main results, we recall the lemma below

Lemma 2.1 (2). . Let vt = (Y1(t), ..., Yn(t)), −ε < t < ε, be a
smooth curve in L(M) with π(vt) = c(t). Then the following statements
are equivalent:

(i) each Yi(t), −ε < t < ε, is parallel along the curve c(t);
(ii) vt, −ε < t < ε, is the horizontal lift of the curve c(t) passing

through the point v0.

Since ut, −ε < t < ε, is the horizontal curve of the curve ct with
u0 = u, we get from (2.4), (2.9) and Lemma 2.1

(2.12)

∇dct/dtXj(t) =
∑

i

∇dct/dta
i
j(ut)(∂/∂xi)ct

=
∑

i

{dai
j(ut)/dt +

∑

k,l

ξlak
j(ut)Γi

lk}(∂/∂xi)ct = 0.

So the horizontal lift X? ∈ Tu(P ) of the vector X =
∑

i ξ
i(∂/∂xi)p may

be written as

(2.13) X? =
∑

i ξ
i(∂/∂xi)u −

∑
i,l ξ

ial
j(u)Γk

il(p)(∂/∂ak
j)u.

By virtue of (2.6) and (2.7), we get on π−1(U ∩ V )

(2.14)

∂

∂xk
=

∑

i

∂yi

∂xk

∂

∂yi
+

∑

h,i,l

ah
l

∂2yi

∂xk∂xh

∂

∂bi
l
,

∂

∂as
j

=
∑

i

∂yi

∂xs

∂

∂bi
j
,

dxi =
∑

j

∂xi

∂yj
dyj , dai

j =
∑

k,l

∂2xi

∂yk∂yl
bl

jdyk +
∑

l

∂xi

∂yl
dbl

j ,

∂

∂yk
=

∑

i

∂xi

∂yk

∂

∂xi
+

∑

h,i,l

bh
l

∂2xi

∂yk∂yh

∂

∂ai
l
,

∂

∂bs
j

=
∑

i

∂xi

∂ys

∂

∂ai
j
,

dyi =
∑

j

∂yi

∂xj
dxj , dbi

j =
∑

k,l

∂2yi

∂xk∂xl
al

jdxk +
∑

l

∂yi

∂xl
dal

j .

From (2.5), (2.8), (2.11), (2.13) and (2.14), we obtain

(2.15)

X? =
∑

i

ξi(∂/∂xi)u −
∑

i,l

ξial
j(u)Γk

il(p)(∂/∂ak
j)u

=
∑

i

ηi(∂/∂yi)u −
∑

i,l

ηibl
j(u)Γ̃k

il(p)(∂/∂bk
j)u.
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This shows that the horizontal subspace does not depend on the choice
of the local coordinate system around the point u ∈ L(M). Thus we
have

Proposition 2.2. Let u ∈ L(M) be an arbitrarily given point, (x1, ...,
xn) a coordinate system on a neighborhood U ⊂ M which contains
π(u) = p, and (x1, ..., xn, a1

1, ..., a
n

n) the coordinate system on π−1(U) ⊂
L(M). Let Γi

jk be the Christoffel’s symbols on U which are defined by
a linear connection ∇ : X(M) × X(M) → X(M). Then the horizontal
subspace Qu of TuL(M) at the point u is given as follows:

Qu = {
∑

i

ξi(∂/∂xi)u −
∑

i,l

ξial
j(u)Γk

il(p)(
∂

∂ak
j
)u | each ξi ∈ R}.

Let Ek
j denote a square matrix of order n with the (k, j)-entry being

1, and all the other entries being 0. Putting (ai
j)i,j =: A, (bi

j)i,j =:
B, A−1 =: C = (ci

j)i,j and B−1 =: D = (di
j)i,j , then we have from

(2.6)

(2.16) ai
j =

∑
l

∂xi

∂yl b
l
j , ci

j =
∑

l d
i
l
∂yl

∂xj

on π−1(U ∩ V ). Putting

ωk
j :=

∑
m

ck
m(dam

j +
∑

i,l

Γm
il a

l
jdxi)

on π−1(U), we obtain from (2.5), (2.14) and (2.16)

(2.17)

ωk
j =

∑
m

ck
m(dam

j +
∑

i,l

Γm
il a

l
jdxi)

=
∑
m

dk
m(dbm

j +
∑

i,l

Γ̃m
il b

l
jdyi)

on π−1(U ∩ V ). This shows that the definition of ωk
j is independent of

the choice of the local coordinate system.
Putting ω :=

∑
k,j ωk

jEk
j on π−1(U) ⊂ P , we get Rg

?ω = Ad(g−1)ω
(g ∈ GLn(R)) since

(Rg
?dam

j)(x?
u) = limt→0{am

j(ug(g−1exp(tx)g))− am
j(ug)}/t,

(u ∈ π−1(U), x ∈ gln(R)). And then, from the definition of ω we ob-
tain ω(x?

u) = x. Here x? is the fundamental vector field on P which is
corresponding to x ∈ gln(R). These shows that ω is a connection form
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on P . Moreover ωu(Y ) = 0 for each Y ∈ Qu, where Qu is the hori-
zontal subspace of Tu(P ) which is appeared in Proposition 2.2. Thus,
from Christoffel’s symbols we can reconstruct the connection form ω.
Summing up we get

Theorem 2.3. Using the local coordinate system (x1, ..., xn, a1
1, ...,

an
n) on π−1(U), and the Christoffel’s symbols Γi

jk with respect to the
local coordinate system x1, ..., xn on U and the linear connection ∇ :
X(M)×X(M) → X(M), we may write the connection form ω on π−1(U) ⊂
L(M) as follows :

(2.18) ω =
∑

j,k,m ck
m(dam

j +
∑

i,l Γ
m
il a

l
jdxi)Ek

j .

2.4. Covariant derivatives. First of all we introduce the well
known

Lemma 2.4. Let C∞(P,Rn) be the subspace of all smooth maps f of
P into Rn which satisfy f(ug) = g−1f(u) (u ∈ P, g ∈ GLn(R)). Then
X(M) and C∞(P,Rn) are identified as follows :

For each X ∈ X(M), f(u) := u−1(Xπ(u)) (u ∈ P ).
Conversely, for each f ∈ C∞(P,Rn), Xπ(u) := u(f(u)) (u ∈ P ).

The canonical form θ of P (M, G, π) is the Rn-valued 1-form on P
defined by

(2.19) θ(X) = u−1(π?(X)) for X ∈ Tu(P ).

Let Z ∈ X(M) and let τ = c(t), −ε < t < ε, be a curve in M .
Then, for each fixed t, the covariant derivative ∇dc(t)/dtZ of Z in the
direction of dc(t)/dt ∈ Tc(t)(M) is defined by

(2.20) ∇dc(t)/dtZ = limh→0
{τ t+h

t (Zc(t+h))−Zc(t)}
h ,

where τ t+h
t : Tc(t+h)M → Tc(t)M denotes the parallel displacement of

Tc(t+h)M along τ from c(t + h) to c(t). We take a horizontal lift τ? =
v(t), −ε < t < ε, of τ = c(t). Then τ t+h

t (Zc(t+h)) in (2.20) becomes

(2.21) τ t+h
t (Zc(t+h)) = (v(t) ◦ v(t + h)−1)(Zc(t+h)).

From (2.20) and (2.21), we have

(2.22) ∇dc(t)/dtZ = v(t)(limh→0
v(t+h)−1(Zc(t+h))−v(t)−1(Zc(t))

h ).

By the help of Lemma 2.4 we can associate with Z an Rn-valued function
f on P as follows:

f(u) = (θ(Z?))(u) = u−1(Zπ(u)) (u ∈ P ).
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Here Z? ∈ X(P ) is the horizontal lift of Z ∈ X(M).
We put dc(t)/dt|t=0 =: W ∈ Tp(M). Let W ? ∈ Tv(P ), (π(v) =

p, v0 =: v), be the horizontal lift of W at v. Since θ(Z?) coincides with
f in the sense of Lemma 2.4, by virtue of (2.20) and (2.22) we get

(2.23) ∇W Z = v(W ?f).

Now, let’s apply (2.23) to the following case:

W =: (
∂

∂xj
)p and Z =:

∂

∂xi
on U ⊂ M.

Let σ : U → P be the cross section of P over U which assigns to each
q ∈ U ⊂ M the linear frame

((
∂

∂x1
)q, ..., (

∂

∂xn
)q).

We put f :=
∑

k ck
iek on π−1(U) ⊂ P , where (ci

j)i,j is the inverse matrix
of the matrix (ai

j)i,j and ek is the column vector which is belonging to
Rn with the k-th entry being 1, and all the other entries being 0. Then
the function f on π−1(U) ⊂ P is the function corresponding to ∂

∂xi . In
fact, since ai

j(ug) =
∑

l a
i
l(u)gl

j (g = (gi
j)i,j ∈ G, u ∈ π−1(U)) and∑

l c
i
la

l
j = δi

j on π−1(U ∩ V ), ci
j(ug) =

∑
l h

i
lc

l
j(u) (g−1 =: h =

(hi
j)i,j ∈ G). So f(ug) = g−1f(u) (u ∈ π−1(U), g ∈ G). And then,

f(σ(q)) =
∑

k ck
i(σ(q))ek = ei (q ∈ U), since ak

i(σ(q)) = δk
i (q ∈

U). Evidently σ(q)(f(σ(q))) = ( ∂
∂xi )q (q ∈ U ⊂ M).

From Proposition 2.2, it follows that, in terms of the coordinate sys-
tem (xi, aj

k) on π−1(U), the horizontal lift W ? of ( ∂
∂xj )p (π(v) = p) is

given by

(2.24) W ? = ( ∂
∂xj )v −

∑
i,k,l Γ

i
jk(p)ak

l(v)( ∂
∂ai

l
)v.

Since W ?(
∑

k am
kc

k
i) = 0 on π−1(U∩V ),

∑
k{W ?(am

k)ck
i+am

kW
?(ck

i)}
= 0. By virtue of this fact, f :=

∑
k ck

iek and (2.24), we obtain

(2.25) W ?(f) =
∑

k,l,m ck
m(v)Γm

ji(p)ek.

Putting σ(p) =: v, then we get from (2.25)

(2.26) ck
m(σ(p)) = δk

m, and σ(p)(W ?(f)) =
∑

k Γk
ji(p)( ∂

∂xk )p.

Thus, from (2.23) and (2.26), we obtain

(2.27) (∇ ∂

∂xj

∂
∂xi )p =

∑
k Γk

ji(p)( ∂
∂xk )p.

Summing up, in the sense of (2.20) we obtain by virtue of (2.23)
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Proposition 2.5. Assume the connection form ω =
∑

i,j ωi
jEi

j with
respect to the local coordinate system (x1, ..., xn, a1

1, ..., a
n

n) on π−1(U)
is given by

ωi
j =

∑

k

ci
k(dak

j +
∑

l,m

Γk
mla

l
jdxm).

Then, on U ⊂ M

∇ ∂

∂xj

∂

∂xi
=

∑

k

Γk
ji

∂

∂xk
.

References

[1] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Aca-
demic Press, New York, 1978.

[2] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, Vol.I,
Wiley-Interscience, New York, 1963.

[3] I. Mogi and M. Itoh, Differential Geometry and Gauge Theory (in Japanese),
Kyoritsu Publ., 1986.

[4] Walter A. Poor, Differential Geometric Structures, McGraw-Hill, Inc., 1081.

*
Department of Mathematics
Busan University of Foreign Studies
Busan 608-738, Republic of Korea
E-mail : iohpark@bufs.ac.kr


